The use of HBV model for flash flood forecasting
نویسنده
چکیده
The standard conceptual HBV model was originally developed with daily data and is normally operated on daily time step. But many floods in Slovenia are usually flash floods as result of intense frontal precipitation combined with orographic enhancement. Peak discharges are maintained only for hours or even minutes. To use the HBV model for flash flood forecasting, the version of HBV-96 has been applied on the catchment with complex topography with the time step of one hour. The recording raingauges giving hourly values of precipitation have been taken in calibration of the model. The uncertainty of simulated runoff is mainly the result of precipitation uncertainty associated with the mean areal precipitation and is higher for mountainous catchments. Therefore the influence of number of raingauges used to derive the areal precipitation by the method of Thiessen polygons was investigated. The quantification of hydrological uncertainty has been performed by analysis of sensitivity of the HBV model to error in precipitation input. The results show that an error of 10% in the amount of precipitation causes an error of 17% in the peak of flood wave. The polynomial equations showing the relationship between the errors in rainfall amounts and peak discharges were derived for two water stations on the Savinja catchment. Simulated discharges of half-yearly runs demonstrate the applicability of the HBV model for flash flood forecasting using the mesoscale meteorological forecasts of ALADIN/SI model as input precipitation data.
منابع مشابه
Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملStudy of Beijiang catchment flash-flood forecasting model
Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood foreca...
متن کاملEnvironmental sensitivity of flash flood hazard using geospatial techniques
Flash flood has been increasing in the Khartoum area, Sudan due to geographical conditions and climatic change as heavy rainfall and high temperature, therefore the present work tried to estimate the sensitivity of flash flood. The present work proposes an advanced technique of flood sensitivity mapping using the method of analytical hierarchy process. Ten factors as elevation, slope, distance ...
متن کاملNew Methods of Flash Flood Forecasting in the Czech Republic
In June/July 2009 the weather in the Czech Republic was influenced by a 12 days lasting baric low located over Mediterranean, which resulted in a sequence of many flash foods. The total damage was estimated to be about 200 mil. EUR and 15 people died. Although the flash flood is considered as hardly predictable phenomena, first efforts in flash floods forecasting have been already done [1]. Som...
متن کاملFlash-flood forecasting by means of neural networks and nearest neighbour approach – a comparative study
In this paper, Multi-Layer Perceptron and RadialBasis Function Neural Networks, along with the Nearest Neighbour approach and linear regression are utilized for flash-flood forecasting in the mountainous Nysa Klodzka river catchment. It turned out that the Radial-Basis Function Neural Network is the best model for 3and 6-h lead time prediction and the only reliable one for 9-h lead time forecas...
متن کامل